
PRESENTS

Fuzzing audit of containerd
In collaboration with the containerd project maintainers and The Linux Foundation

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: 2nd March, 2023

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

mailto:adam@adalogics.com
mailto:david@adalogics.com

containerd fuzzing audit, 2021-2022

CNCF security and fuzzing audits
This report details a fuzzing audit commissioned by the CNCF and the engagement is part of the
broader efforts carried out by CNCF in securing the so�ware in the CNCF landscape. Demonstrating
and ensuring the security of these so�ware packages is vital for the CNCF ecosystem and the CNCF
continues to use state of the art techniques to secure its projects as well as carrying out manual
audits. Over the last handful of years, CNCF has been investing in security audits, fuzzing and
so�ware supply chain security that has helped proactively discover and fix hundreds of issues.

Fuzzing is a proven technique for finding security and reliability issues in so�ware and the efforts
so far have enabled fuzzing integration into more than twenty CNCF projects through a series of
dedicated fuzzing audits. In total, more than 350 bugs have been found through fuzzing of CNCF
projects. The fuzzing efforts of CNCF have focused on enabling continuous fuzzing of projects to
ensure continued security analysis, which is done by way of the open source fuzzing project
OSS-Fuzz1.

CNCF continues work in this space and will further increase investment to improve security across
its projects and community. The focus for future work is integrating fuzzing into more projects,
enabling sustainable fuzzer maintenance, increasing maintainer involvement and enabling fuzzing
to find more vulnerabilities in memory safe languages. Maintainers who are interested in getting
fuzzing integrated into their projects or have questions about fuzzing are encouraged to visit the
dedicated cncf-fuzzing repository https://github.com/cncf/cncf-fuzzing where questions and
queries are welcome.

1 https://github.com/google/oss-fuzz

2

https://github.com/cncf/cncf-fuzzing
https://github.com/google/oss-fuzz

containerd fuzzing audit, 2021-2022

Executive Summary
This report outlines the work that has been done to integrate fuzzing into the containerd project.
The work was funded by the Cloud Native Computing Foundation and was carried out by Ada
Logics throughout 2021 and 2022.

Results summarised
Extensive fuzzing integration efforts spanning over more than a year resulted in 28 fuzzers
targeting containerd code.

All fuzzers are running continuously on OSS-Fuzz and in the CI.

4 crashes found, 1 CVE:
● 1 panic from invalid digests
● 1 type confusion
● 1 slice bounds out of range
● 1 memory exhaustion vulnerability (CVE-2023-25153)

All fuzzers are merged upstream into the containerd repository.

The high-level goal of the engagement was to integrate fuzzing into containerd in a continuous
manner. To meet this goal, Ada Logics executed the following sub-goals:

1. New fuzzers: A significant number of fuzzers, totalling 28 fuzzers, were written to cover
different parts of the code base. The fuzzers range in nature from focus on complex
processing routines to whole-package fuzz harnesses.

2. Continuous fuzzing by way of OSS-Fuzz: All fuzzers were added to the open source fuzzing
service OSS-Fuzz. This enables the fuzzers to run continuously and provides additional
features e.g. issue reporting, issue tracking and enables the fuzzers to operate on the latest
version of containerd.

3. CI integration: All OSS-Fuzz projects can add CIFuzz2 to their CI pipeline. This tests all pull
requests with fuzzers that cover the code being changed. Ada Logics integrated CIFuzz for
containerd.

All fuzzing harnesses in this engagement were integrated into OSS-Fuzz. To accommodate rapid
development and prevent excessive upstream review cycles, new fuzzers were added to the
cncf-fuzzing repository3, and OSS-Fuzz was instructed to pull the fuzzers from there at build time.
containerd maintainer Kazuyoshi Kato migrated the fuzzers upstream to the containerd repository
and instructed OSS-Fuzz to use them from there.

3 https://github.com/cncf/cncf-fuzzing
2 https://google.github.io/oss-fuzz/getting-started/continuous-integration/

3

https://github.com/cncf/cncf-fuzzing
https://google.github.io/oss-fuzz/getting-started/continuous-integration/

containerd fuzzing audit, 2021-2022

The audit comprised a significant fuzzing effort resulting in three issues found. The three issues
reported is a low number, and this demonstrates containerdʼs high level of code quality. This is
even more impressive considering the size of the fuzzing effort which spanned more than a year.

4

containerd fuzzing audit, 2021-2022

Table of contents

CNCF security and fuzzing audits 2

Executive Summary 3

Table of contents 5

Project Summary 6

containerd fuzzing 7

Runtime stats 13

Issues found 15

Conclusions and future work 20

5

containerd fuzzing audit, 2021-2022

Project Summary
Ada Logics auditors

Name Title Email

Adam Korczynski Security Engineer Adam@adalogics.com

David Korczynski Security Researcher David@adalogics.com

containerd maintainers involved in the audit

Name Title Email

Kazuyoshi Kato Senior So�ware
Development Engineer

katokazu@amazon.com

Samuel Karp Staff So�ware Engineer samuelkarp@google.com

Assets

Url Branch

https://github.com/containerd/containerd main

6

https://github.com/containerd/containerd

containerd fuzzing audit, 2021-2022

containerd fuzzing
In this section we present details on containerdʼs fuzzing set up, and in particular the overall
fuzzing architecture as well as the specific fuzzers developed.

Architecture
A central component in containerdʼs fuzzing suite is continuous fuzzing by way of OSS-Fuzz.
containerd upstream source tree is the key so�ware package that OSS-Fuzz uses to fuzz
containerd. The following figure gives an overview of how OSS-Fuzz uses containerdʼs upstream
repository and what happens when an issue is found/fixed.

Figure 0.1: containerd’s fuzzing architecture

7

containerd fuzzing audit, 2021-2022

The current OSS-Fuzz setup builds the fuzzers by cloning the upstream containerd Github
repository to get the latest containerd source code and then builds the fuzzers in the cloned
containerd source tree. As such, the fuzzers are always run against the latest containerd commit.

This build cycle happens daily and OSS-Fuzz will verify if any existing bugs have been fixed. If
OSS-fuzz finds that any bugs have been fixed OSS-Fuzz marks the crashes as fixed in the Monorail
bug tracker and notifies maintainers.

In each fuzzing iteration, OSS-Fuzz uses its corpus accumulated from previous fuzz runs. If
OSS-Fuzz detects any crashes when running the fuzzers, OSS-Fuzz performs the following actions:

1. A detailed crash report is created.
2. An issue in the bug tracker is created.
3. An email is sent to maintainers with links to the report and relevant entry in the bug

tracker.

OSS-Fuzz has a 90 day disclosure policy, meaning that a bug becomes public in the bug tracker if it
has not been fixed. The detailed report is never made public. The containerd maintainers will fix
issues upstream, and OSS-Fuzz will pull the latest containerd master branch the next time it
performs a fuzz run and verify that a given issue has been fixed.

containerd’s fuzzers
In this section we will give an outline of the fuzzers written for containerd. At the time of
conclusion of the fuzzing audit, all fuzzers reside in the containerd repository. They have
been implemented by either the standard library Go fuzzing engine or the go-fuzz fuzzing
engine, both of which are supported for continuous testing by OSS-Fuzz.

The following fuzzers have been written for Containerd during the fuzzing audit.

Name Target package

1 FuzzLoadDefaultProfile containerd/contrib/apparmor

2 FuzzApply containerd/archive

3 FuzzImportIndex containerd/images/archive

4 FuzzCSWalk containerd/content/local

5 FuzzArchiveExport containerd/images/archive

6 FuzzUUIDParse github.com/google/uuid

7 FuzzExchange containerd/events/exchange

8 FuzzImageStore containerd/images

9 FuzzLeaseManager containerd/leases

10 FuzzContainerStore containerd/containers

8

containerd fuzzing audit, 2021-2022

11 FuzzContentStore containerd/content

12 FuzzCRISandboxServer containerd/pkg/cri/sbserver

13 FuzzImagesCheck containerd/images

14 FuzzDiffApply containerd/diff/apply

15 FuzzDiffCompare containerd/diff/walking

16 FuzzCRIServer containerd/pkg/cri/server

17 FuzzParseAuth containerd/pkg/cri/server

18 FuzzContainerdImport containerd

19 FuzzParseProcPIDStatus containerd/pkg/cap

20 FuzzDecompressStream containerd/archive/compression

21 FuzzPlatformsParse containerd/platforms

22 FuzzContentStoreWriter containerd/content/local

23 FuzzFetcher containerd/remotes/docker

24 FuzzParseDockerRef containerd/remotes/docker

25 FuzzParseHostsFile containerd/remotes/docker/config

26 FuzzParseAuthHeader containerd/remotes/docker/auth

27 FuzzConvertManifest containerd/remotes

28 FuzzFiltersParse containerd/filters

Target APIs
FuzzLoadDefaultProfile
Creates a file, writes pseudo-random bytes to the file and passes the filename to
LoadDefaultProfile().

FuzzApply
Applies a pseudo-random tar archive on a directory.

FuzzImportIndex
Instantiates a content store, creates pseudo-random tar bytes and imports the tar bytes by way of
ImportIndex().

FuzzCSWalk
Creates a pseudo-random blob store, walks it and verifies each entry.

FuzzArchiveExport
Creates a pseudo-random blob store and exports it.

9

containerd fuzzing audit, 2021-2022

FuzzUUIDParse
Tests the 3rd-party dependency github.com/google/uuid.

FuzzExchange
Instantiates an exchange and calls Publish() and Forward() with pseudo-randomized events.

FuzzImageStore
Instantiates an image store and calls its Create(), List(), Update(), Delete() methods in
pseudo-random order with pseudo-randomized parameters for each method.

FuzzLeaseManager
Instantiates a lease manager and calls its Create(), List(), AddResource(), Delete(),
DeleteResource(), ListResources() methods in pseudo-random order with
pseudo-randomized parameters for each method.

FuzzContainerStore
Instantiates a container store and calls its Create(), List(), Delete(), Update(), Get()
methods in pseudo-random order with pseudo-randomized parameters for each method.

FuzzContentStore
Instantiates a content store and calls its Info(), Update(), Walk(), Delete(),
ListStatuses(), Status(), Abort(), Commit() methods in pseudo-random order with
pseudo-randomized parameters for each method.

FuzzCRISandboxServer
Creates a sandbox CRI server and in pseudo-random order calls its CreateContainer(),
RemoveContainer(), AddSandbox(), ListContainers(), StartContainer(),
ContainerStats(), ListContainerStats(), ContainerStatus(), StopContainer(),
UpdateContainerResources(), ListImages(), RemoveImages(), ImageStatus(),
ImageFsInfo(), ListPodSandbox(), PortForward(), RemovePodSandbox(),
RunPodSandbox(), PodSandboxStatus(), StopPodSandbox(), Status(),
UpdateRuntimeConfig() methods.

FuzzImagesCheck
Creates a content store and checks it with a pseudo-randomized image descriptor.

FuzzDiffApply
Creates a pseudo-random oci descriptor and a pseudo-random number of mounts and applies
them to a file system applier.

FuzzDiffCompare

10

containerd fuzzing audit, 2021-2022

Creates two different slices of pseudo-random mounts and compares them.

FuzzCRIServer
Creates a CRI server and in pseudo-random order calls its CreateContainer(),
RemoveContainer(), AddSandbox(), ListContainers(), StartContainer(),
ContainerStats(), ListContainerStats(), ContainerStatus(), StopContainer(),
UpdateContainerResources(), ListImages(), RemoveImages(), ImageStatus(),
ImageFsInfo(), ListPodSandbox(), PortForward(), RemovePodSandbox(),
RunPodSandbox(), PodSandboxStatus(), StopPodSandbox(), Status(),
UpdateRuntimeConfig() methods.

FuzzParseAuth
Passes a pseudo-random auth config and host string to ParseAuth().

FuzzContainerdImport
Creates a client and imports pseudo-random tar bytes.

FuzzParseProcPIDStatus
Passes pseudo-random bytes to ParseProcPIDStatus().

FuzzDecompressStream
Passes a pseudo-random byte slice to DecompressStream().

FuzzPlatformsParse
Passes a pseudo-random string to platforms.Parse().

FuzzContentStoreWriter
Writes pseudo-random bytes to a content store.

FuzzFetcher
Fetches pseudo-random bytes from a demo registry.

FuzzParseDockerRef
Parses a pseudo-random docker reference.

FuzzParseHostsFile
Tests parseHostsFile() with a pseudo-random host file.

FuzzParseAuthHeader
Tests ParseAuthHeader() with a http header containing a pseudo-random WWW-Authenticate

string.

11

containerd fuzzing audit, 2021-2022

FuzzConvertManifest
Tests ConvertManifest() with a pseudo-random oci descriptor.

FuzzFiltersParse
Parses a pseudo-random filter string.

12

containerd fuzzing audit, 2021-2022

Runtime stats
The power of continuous fuzzing by way of OSS-Fuzz means that a lot of compute power is used to
analyse the code. There are significant benefits to this as fuzzing relies on genetic mutational
algorithms that over time increasingly builds up a corpus of test cases. This means, the time spent
fuzzing is an important factor when determining the completeness of a fuzzing audit. As of 6th
December 2022, the total runtime stats in the form of tests executed and hours run is:

Name Total tests executed Total runtime (hours)

FuzzLoadDefaultProfile 22,570,694,284 1,169.1

FuzzApply 829,056,289 1,987.6

FuzzImportIndex 164,873,077 1,944.8

FuzzCSWalk 60,715,597 1,869.9

FuzzArchiveExport 278,209,239 1,956.5

FuzzUUIDParse 31,089,700,668 1,761

FuzzExchange 307,395,090 963

FuzzImageStore 522,581,063 1,991.8

FuzzLeaseManager 238,822,003 2,005

FuzzContainerStore 347,279,095 1,990.6

FuzzContentStore 276,186,129 1,826.5

FuzzCRISandboxServer 179,829 1,054.1

FuzzImagesCheck 27,365,017 60.2

FuzzDiffApply 20,314,511 47.1

FuzzDiffCompare 105,514,110 876

FuzzCRIServer 174,508 1,105.4

FuzzParseAuth 19,691,079,012 2,022.1

FuzzContainerdImport 263,979 1,530.4

FuzzParseProcPIDStatus 59,210,853,905 2,028.8

FuzzDecompressStream 21,788,080 72.2

FuzzPlatformsParse 39,424,788,221 2,240.7

FuzzContentStoreWriter 27,813,273 626

FuzzFetcher 5,673,591,790 2,031.2

FuzzParseDockerRef 2,170,086,760 2,039.2

FuzzParseHostsFile 11,085,831 70.5

FuzzParseAuthHeader 34,822,726,125 1,492.6

13

containerd fuzzing audit, 2021-2022

FuzzConvertManifest 60,628,025 63.2

FuzzFiltersParse 23,637,619,834 1,567.2

14

containerd fuzzing audit, 2021-2022

Issues found
The fuzzers have found 4 unique crashes; 3 in containerd and 1 in a third-party dependency. All
three issues have been fixed upstream.

ID Title Fixed

1 ADA-CONT-1 digest.Algorithm() and digest.Encoded() may panic for invalid digests Yes

2 ADA-CONT-2 interface conversion: interface {} is *errors.errorString, not string Yes

3 ADA-CONT-3 Slice bounds out of range in mount.(*Mount).Mount Yes

4 ADA-CONT-4 OCI image importer memory exhaustion Yes

All issues were reported by OSS-Fuzz by way of its bug tracker which the containerd maintainers
have access to. Below we cover each issue found with a link to each bug report in the bug tracker.
These reports contain an overview of the issue, however, reproducer test cases and stacktraces are
not publicly available and this includes even a�er the bugs are marked as fixed.

The most notable issue is ADA-CONT-4: “OCI image importer memory exhaustion”. This issue could
be exploited to exhaust memory on the host machine if a victim would import a particularly
well-cra�ed OCI image. containerd have assigned this issue CVE-2023-25153 with severity
moderate and released a fix for it in containerd 1.6.18:
https://github.com/containerd/containerd/releases/tag/v1.6.18.

15

https://github.com/containerd/containerd/releases/tag/v1.6.18

containerd fuzzing audit, 2021-2022

Issue 1: digest.Algorithm() and digest.Encoded() may
panic for invalid digests

OSS-Fuzz bug tracker: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=50776&q=
containerd

Fixed: Yes

ID: ADA-CONT-1

Description
A fuzzer demonstrated that lack of validation was in place for digests before calling either
Digest.Algorithm() and Digest.Encoded(). The result was a panic from a 3rd-party library.
The issue affected several calls in images/archive, and it was fixed by validating the digest
before invoking any of the methods that could cause the panic.

The underlying issue of this crash is that Digest.Encoded() and Digest.Algorithm() do not validate
the digest but rather assumes that it has been validated. This is also mentioned in the
documentation:

https://github.com/containerd/containerd/blob/3e7bbb8a491840ddc099749ea2af30c1796557f7/vend

or/github.com/opencontainers/go-digest/digest.go#L127

Containerd was lacking this validation in several places across the code base and was
added here: https://github.com/containerd/containerd/pull/7488

16

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=50776&q=containerd
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=50776&q=containerd
https://github.com/containerd/containerd/blob/3e7bbb8a491840ddc099749ea2af30c1796557f7/vendor/github.com/opencontainers/go-digest/digest.go#L127
https://github.com/containerd/containerd/blob/3e7bbb8a491840ddc099749ea2af30c1796557f7/vendor/github.com/opencontainers/go-digest/digest.go#L127
https://github.com/containerd/containerd/pull/7488

containerd fuzzing audit, 2021-2022

Issue 2: interface conversion: interface {} is *errors.errorString,
not string

OSS-Fuzz bug tracker: ● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=4
8057

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
0781

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
1697

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
3356

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
3768

Fixed Yes

ID: ADA-CONT-2

Description
A type confusion was found in the 3rd-party library github.com/pelletier/go-toml@v1.9.3.
The call in Containerd to the 3rd-party library is made in
https://github.com/containerd/containerd/blob/main/remotes/docker/config/hosts.go:

327

328

329

330

331

332

func parseHostsFile(baseDir string, b []byte) ([]hostConfig, error) {

tree, err := toml.LoadBytes(b)

if err != nil {

return nil, fmt.Errorf("failed to parse TOML: %w", err)

}

...

Figure 2.2: Point of failure of ADA-CONT-2

The issue was fixed upstream in
https://github.com/pelletier/go-toml/commit/fed1464066413075eac02cd4dc368b5221845541

17

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=48057&q=containerd&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=48057&q=containerd&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=50781
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=50781
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=51697
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=51697
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53356
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53356
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53768
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53768
https://github.com/containerd/containerd/blob/main/remotes/docker/config/hosts.go
https://github.com/pelletier/go-toml/commit/fed1464066413075eac02cd4dc368b5221845541

containerd fuzzing audit, 2021-2022

Issue 3: Slice bounds out of range in mount.(*Mount).Mount

OSS-Fuzz bug tracker: ● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
0829

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
2682

Fixed: Yes

ID: ADA-CONT-3

Description
A crash was found in
github.com/containerd/containerd/mount.compactLowerdirOption() where a fuzzer
could trigger an out of range by passing a well-cra�ed string in the slice in the function argument.
The entrypoint of the fuzzers to compactLowerdirOption() was (m *Mount) Mount(target
string) which passes m.Options to compactLowerdirOption().

The stacktrace demonstrates how the fuzzer triggered the crash:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

panic: runtime error: slice bounds out of range [2:1]
goroutine 17 [running, locked to thread]:
github.com/containerd/containerd/mount.compactLowerdirOption({0x10c000936000?, 0x24, 0x24})
 github.com/containerd/containerd/mount/mount_linux.go:283 +0x96e
github.com/containerd/containerd/mount.(*Mount).Mount(0x10c000a5daa0, {0x10c000a079c0, 0x1e})
 github.com/containerd/containerd/mount/mount_linux.go:61 +0x2f4
github.com/containerd/containerd/mount.All(...)
 github.com/containerd/containerd/mount/mount.go:35
github.com/containerd/containerd/mount.WithTempMount({0x311b918, 0x10c0000481c0},
{0x10c000934a80, 0x7, 0x6ae745?}, 0x10c000a5db88)
 github.com/containerd/containerd/mount/temp.go:61 +0x685
github.com/containerd/containerd/diff/walking.(*walkingDiff).Compare(0x10c000084de8, {0x311b918,
0x10c0000481c0}, {0x10c000934a80, 0x7, 0x8}, {0x10c000084d18, 0x0, 0x0}, {0x0, ...})
 github.com/containerd/containerd/diff/walking/differ.go:89 +0x82f
github.com/containerd/containerd/contrib/fuzz.FuzzDiffCompare({0x620000001080, 0xf05, 0xf05})
 github.com/containerd/containerd/contrib/fuzz/diff_fuzzer.go:106 +0xa9c

Figure 3.1: Stacktrace for ADA-CONT-3

18

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=50829&q=containerd&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=50829&q=containerd&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=52682
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=52682

containerd fuzzing audit, 2021-2022

Issue 4: OCI image importer memory exhaustion

OSS-Fuzz bug tracker: ● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
5038

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
5084

Fixed: Yes

ID: ADA-CONT-4

Description
This finding has been assigned CVE-2023-25153.
GH advisory: https://github.com/containerd/containerd/security/advisories/GHSA-259w-8hf6-59c2

A fuzzer found an issue in the image importing logic of containerd, whereby an attacker could cra�
a malicious OCI image and cause system-wide resource exhaustion when the victim would import
the image. The particular issue had its root cause in the way some of the files were processed in the
image; if some of the files in the image were large, denial-of-service would be achieved by way of
memory exhaustion.

The issue was reported by OSS-fuzz on January 12th 2023. For further information about impact,
we refer to the Github advisory linked above, and the release notes for containerd 1.6.18:
https://github.com/containerd/containerd/releases/tag/v1.6.18.

19

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=55038
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=55038
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=55084
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=55084
https://github.com/containerd/containerd/security/advisories/GHSA-259w-8hf6-59c2
https://github.com/containerd/containerd/releases/tag/v1.6.18

containerd fuzzing audit, 2021-2022

Conclusions and future work
In this audit, Ada Logics improved containerdʼs fuzzing efforts. The efforts resulted in 28 fuzzers, 3
issues found and a CI integration. The containerd team moved the fuzzers upstream and now
maintain a well-organised fuzzing suite that runs continuously on OSS-Fuzz and on pull-requests in
the CI.

The current state of fuzzing containerd is impressive and the containerd maintainers deserve a lot
of credit for this. Three issues reported is a low number, and this demonstrates containerdʼs high
level of code quality. This is even more impressive considering the size of the fuzzing effort which
spanned more than a year.

Fuzzing is a continuous discipline, and we recommend that containerd takes the following steps
moving forward:

Maintaining the fuzzers
The fuzzers should keep running without breaking to keep testing the code for hard-to-find bugs
and build up the corpus.
Over time, containerdʼs fuzzing suite will improve passively from new features added to the fuzzing
infrastructure of OSS-Fuzz. An exciting development in this context novel bug detectors targeted
managed languages. These will be added in a non-intrusive way, meaning that as long as
containerdʼs fuzzers run continuously, they will over time test for more classes of bugs.

Improve coverage
We recommend making it a continuous effort to identify missing test coverage of the fuzzers. This
can be done using the code coverage visualisations provided by OSS-Fuzz.

Require fuzzers for new code
We recommend that new code contributions are required to be accompanied by fuzz tests. This
will both ensure that new code gets tested from the moment it gets merged into containerd, and it
will ensure that the fuzzer is written by the developer itself.

Acknowledgements
We thank the Linux Foundation for sponsoring this project as well as the team at containerd for a
fruitful and enjoyable collaboration.

We also thank the maintainers and team of OSS-Fuzz for their efforts in making open source
fuzzing possible in this manner.

20

